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Resonant (phase-locked) interactions among three obliquely oriented solitary 
waves are studied. It is shown that such interactions are associated with the 
parametric end points of the singular regime for interactions between two 
solitary waves. The latter include regular reflexion at a rigid wall, which is 
impossible for $$ < (3a)4 ($ri = angle of incidence, a = amplitude/dept,h < l) ,  
and it is shown that the observed phenomenon of ‘Mach reflexion’ can be 
described as a resonant interaction in this regime. The run-up at the wall is 
calculated as a function of $,/(3a)* and is found to have a maximum value of 
4ad for $i = (301)4. This same resonant interaction also describes diffraction of a 
solitary wave a t  a corner of internal angle n-$$, - (3a)J < $i < (3a)*, and 
suggests that a solitary wave cannot turn through an angle in excess of (3a)t 
a t  a convex corner without separating or otherwise losing its identity. 

1. Introduction 

depth d has the dimensionless description 
A solitary wave (soliton) of free-surface displacement ad7 in water of quiescent 

7 = k2sech20+O(a), (1.1) 

where 0 = k.x-ot+O,, (1.2) 

k = k{cos $, sin @}, o = kc = k { l  + +k2a + O(a2))  (1.3a, b )  

are the phase, wavenumber and circular frequency, c is the wave speed, B0 is s 
phase constant, x = {x, z} is the co-ordinate vector in a horizontal plane, 

1 = 2(3a)-td /3-*d, (1.4) 

Z/(gd)* and (gd)J are the reference values of length, time and speed, and a and 
p = *a are small parameters. The subscript n is appended to 7, k, $, c,  o, 0 and 0, 
in the following treatment of interacting solitons, and ki then appears as the 
relative amplitude (we may choose k = 1 for a single soliton, or for one member 
of a set of solitons, by choosing a such that ad is the maximum displacement 
for that soliton). 

The oblique interaction between two solitons is described by (Miles 1977, 
hereinafter referenced by I, followed by the appropriate equation or section 
number) 

k; El + kz E, + (k, - Ic,)~E, E,  + e28{(k, + k,)2 + ki El + k; E,} El E, 
9 (1.5) (1 +El + E, +eZ8 El E2)2 $7 = 
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where 

sin2 $ - P( k, + k2)2 I ’ sin2 $ - P( k, - k,), 6 = Qlog 

$ = Q(ll.2- $1) (1.W 
and, here and subsequently, error factors of 1 + O(a) are implicit. The parameters 
P(k, + k,),, P(k,  - k,), and $ are, respectively, measures of mean strength, relative 
strength, and obliquity. The individual solutions r ] ,  and r ] ,  may be superimposed 
if $, $ 3a, for then 8 = 1 +O(a), and (1.5) reduces to r] = r ] 1 + r ] 2  to within 
1 + O(a). Superposition fails if $2 = O(a), and the interaction between two 
incoming solitons r ] ,  and q2 then yields outgoing solitons with phase shifts of 
magnitude 6 and signs depending on the relative values of $2 and (ki - k:) a; 
see I $ 6 for details. 

Perhaps the most striking feature of the interaction described by (1.5) is that 
it is singular if 

in the general (asymmetric) case or if 

P(k1- k2Y < $2 < m,+ k,I2 

0 c $2 < 3a 

(1.9) 

(1.10) 

for reflexion at a rigid wall, for which k, = k, = 1 and P2 = - $, = $. 
I now proceed to show that the end points of this singular regime, 

+z = P(k, T k,),, are associated with resonant interactions among three solitons.$ 
I then go on (in $4) to show that such an interaction provides an asymptotic 
(in time or downstream distance) solution of the problem of ‘Mach reflexion’ 
(Wiegel1964a, b) of a solitary wave if $$ < 3 4  where $i is the angle of incidence. 
The ratio of the maximum free-surface displacement a t  the wall to the amplitude 
of the incident wave is a relatively simple function of yFi/(3a)8 that increases 
from the value of 2 predicted by linearized theory to a maximum of 4 at $: = 3a 
and then decreases to 1 as $$/3a 4 0 (corresponding to a wave moving parallel 
to the wall). This result may be of some practical significance in connexion with 
tsunamis (Wiegel 196471). 

The solution developed in $ 4  also provides an asymptotic description of the 
diffraction of a soliton at a corner of internal angle n - $$, - (3a)i < $i < (3019, 
and suggests that a soliton cannot turn through an angle in excess of (3a)B a t  a 
convex corner without separating or otherwise losing its identity. 

It must be emphasized that the present theory is based on the limit a 4 0 
(weak nonlinearity). The available experimental data (Perroud 1957; Chen 1961) 
are for non-small a (0.2-0*6) and, in this and other respects, are inadequate 
for a quantitative test of the present theory. The observed patterns are in quali- 
tative agreement with those predicted here; however, the data suggest that the 
critical value of $i [(3a)* according to the present theory] may tend to a constant 

t The unsubscripted parameter $is defined by (1.8), and $ as defined by ( 1 . 3 ~ )  always 

$ Resonant interactions among three unidirectional solitons aro considered by Kaup 
appears with a subscript, throughout the sequel. 

(1976). 
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FIGURE I.  The moving reference frame R, . 

value of roughly 45" with increasing a, although breaking naturally occurs for 
sufficiently large a. 

2. Wave kinematics 
We d e h e  a resonant (phase-locked might be more precise) interaction among 

three solitons, the phases of which are defined by (1.2) with subscripts appended, 
by the conditions 

(2 . la ,  b) 

where, here and subsequently, the signs are vertically ordered (note that reversing 
this order is equivalent to interchanging the subscripts 2 and 3), and the sub- 
scripts & in the sequel refer to the corresponding alternatives. Substituting 
(1.3) into (2.1) and letting a J. 0 with kl,2 prescribed yields the resonance 
conditions 

k3 = k,kk, ,  k3$3 = k,$Zkh$I (2.2a, b)  

k3 = k, k k,, o3 = w2 & wl, 

and $2 $($2 - = p(kz 2 $%. (2.2c) 

We emphasize that (2.1) can be satisfied only if $2 = O(a) and that, as anti- 
cipated in $1,  ( 2 . 2 ~ )  corresponds to the end points in (1.9). 

The phases O1 and 02, and hence the solitons q1 and r2, are stationary in a 
reference frame R ,  moving with a velocity c, = c,{cos $*, sin $*} that is deter- 
mined by 

for n = 1 and 2 (the projection of c* on k,, i.e. on the normal to the surface 
0, = constant, must be equal to cn; cf. Snell's law). It then follows from (2.1) 
that (2.3) holds also for n = 3,  by virtue of which the resonant interaction is 
stationary in R,. Introducing (see figure 1)  

x* = xcos$*+zsin$,-c,t, z* = -xsin$*+zcos$, (2.4a,b) 

CnSec($n-$*) = C* (2.3) 

in (1.2) and invoking $, - $* = U ( d )  yields 

for the phases in R, within the present approximation. 

$* yields 

and 

3n - @on = kn(x* + ($n - $*I z*> (2.5) 

Substituting c,, from (1.3) into (2.3) and solving (with n = 1,2)  for c* and 

C* = 1+$+(k2,+ki+klk2)  ( 2 . 6 ~ )  

$* = +($2 + $1) + +a(ki  - k 3  ($2 - $1)-'- (2 .6  b )  
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TABLE 1. The asymptotic limits associated with (3.5) and figure:2. 
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Invoking (2.2) yields the more symmetrical expressions 

3. Solutions 
We now align the x axis with c, and introduce the rescaled co-ordinates 

= X-CC*t, = (3a)iz ($, 0 )  (3.la, b) 

(the scale of the interaction zone is 1 N d / d  in the direction of c, and I / (  3a)t N d/a 
in the transverse direction). We do not require the equations of motion (see 
I 0 2) explicitly for the present development, but it is worth noting that intro- 
ducing (3.1) in I(2.5) and I (2.6), letting a40 with 6, 6 = 0(1), and assuming 
that 7 is stationary in R, yields 

75555 + 6(r2)& - 1/55 + 12751; = 0, (3.2) 

where k2, = +(k2,+ki+k;) .  
We obtain the solution of (3.2) for $ = $- by letting 6 J. --oo in (1.5): 

k2, exp ( - 2 4 )  + ki: exp ( - 28,) + (k, - k,), exp { - 2(S1 + O,)} 
[ 1 + exp ( - 28,) + exp ( - 28,)]2 ($ = $-)a 211 = 

(3.3) 

To show that (3.3) corresponds to the resonant interaction defined by (2.2)-, 
we assume (for definiteness) that $, > $1, solve (2.2c)-, (2.6b) and (2.7b) for 
($n - $, in 0 2 = $, here) 

{$l, $2, $3) = (Q4, {k,- 2k2, k, - 2k1, k l  + k2) sgn (kz - kl) 

($ = $- > O ) ,  (3.4) 

combine the result with (2.5) in (3.3), and carry out the limits (with kl,a > 0)  
summarized in table 1 (cf. I 0 6). It follows from these limits that (3.3) describes 
the resonant interactions (see figure 2) 

and 

( 3 . 5 ~ )  

(3.5b) 

(3.5c) 

(3.5d) 

where the left/right-hand sides correspond to the incoming/outgoing waves at 
large distances from the interaction zone. 

The marginal case k, = *kl yields $1 = 0 and c1 = c,, such that an observer 
in R, perceives 7 N ql/o(i) on his left/right and 7 N qz/1/3 in his fourth/third 
quadrants. The marginal case k, = 2 4  yields $, = 0 and c, = c*, such that an 
observer in R, perceives 7 N o ( l ) / ~ ,  on his left/right and 7 N q1/q3 in his first/ 
second quadrants. (The marginal case k, = k, corresponds to a single wave and 
is trivial in the present context.) 
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TABLE 2. The asymptotic limits associated with (3.8) and figure 3 

((0 (b)  

FIGURE 3. The resonant interactions described by (3.6)-(3.8) for (a) k, < k, and (b) k, > k,. 
The broken lines are surfaces of constant O1 (---), 8, (----) and O3 (----). The 
angular scale is exaggerated by the transformation (3.1). 

We obtain the solution of (3 .2 )  for $ = $+ simply by changing the signs of 
both k, and 8, in (3.3) or, equivalently, interchanging the subscripts 2 and 3: 

17 = kq exp (28,) + ki exp ( - 28,) + (k, + k2)2exp {2(8, - O,)} 
[ 1 + exp (28,) + exp ( - 20,)l2 

(3.6a) 

kq exp ( - 28,) + kz exp ( - 28,) + (k3 - klP exp { - 2(8, + 8,)) 
[ 1 + exp ( - 20,) + exp ( - Z8,)]2 ($ = $+I, - - 

(3.6b) 
where 8, is given by (2.5) with 

{$l> 42, $31 = ( $ 4 4  - &+ 2k2), k, + 2h,, k2 - k, ) )  (3 = $+ > 0). (3.7) 

Carrying out the limits summarized in table 2 yields (see figure 3) 

713{72, 731 ( k 2  < kl), (3.8a) 

(713 1;/3)-+72 (k2 ' h)- (3.86) 
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FIGURE 4. The Mach-reflexion pattern of 0 4. The angular scale is exaggerated. 

4. Mach reflexion 
Observation (Wiegel 1 9 6 4 ~ )  b )  and experiment (Perroud 1957; Chen 1961) 

reveal that regular reflexion of a solitary wave a t  a rigid wall (for which k, = k,, 
$, = - $, = $ and $* = 0 in the present notation) is impossible for sufficiently 
small angles of incidence and is replaced by ‘Mach reflexion’ (geometrically 
similar to the corresponding shock-wave reflexion). The apex of the incident and 
reflected waves then moves away from the wall at a constant angle, say $*, 
and is joined to the wall by a third solitary wave (the ‘Mach stem’), as shown in 
figure 4. Moreover, the strength of the reflected wave decreases to zero with the 
angle of incidence. There is some question as to the stability of the resulting 
waves, and the observed stem-wave profile may depart significantly from that 
of a true (Boussinesq) solitary wave, but the available data are not definitive. 
It seems likely, nevertheless, that there exists a parametric regime in which the 
Mach-reflexion pattern is realized and that the pattern is asymptotically 
stationary (the reflexion is initiated at the leading edge of a wall of finite length 
in the experiments, and non-stationary effects must be significant near the 
leading edge). 

Against this background, we consider the resonant interaction described by 
(3.6)) (3.7) and ( 3 . 8 ~ )  with 7, as the incident wave, v2 as the reflected wave and 
y3 as the stem wave. Replacing $7t in $3 by $n-$* (as in $ 2  and such that 
$n is now measured from the wall), choosing k, = 1, PI = - $i and $3 = 0, and 
invoking (2 .2)+  and (2.7) yields 

{k’ k,, k31 = (1,  k ,  1 + k},  { 4 1 , $ 2 >  $3) = ( 3 4 4  { - k,  1, O},  ( 4 . 1 ~ )  b)  

$* = ( + a ) * ( l - k ) ,  C* = 1 + $ a ( l + E + k 2 )  (4.2u, b, c )  

and k = $( / (3~~)4 .  (4.3) 

Choosing On, = 0, such that 8, = 0 a t  x = z = t = 0 for n = 1, 2 and 3, and 
introducing the R, co-ordinates of (2.4) yields 

{@I, @2,83) = { 1 k ,  1 + k} X* + { - (I + 2k) ,  k( 2 + k ) ,  - ( 1 - k2)) (*a)& z*. (4.4) 

Requiring the apex to move away from the wall ($* > 0 )  implies k < 1, so that 
I2 F L M  79 
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FIGURE 5. The run-up at the wall, as given by (4.5). 

the parametric range of interest is 0 < k < 1 in the present context (but see 
last paragraph in this section). The limit k f 1 ($* 4 0) corresponds to regular 
reflexion for $2 = 3a. The limit k 4 0 ($$ f 0, k, J. 0) corresponds to a single 
wave, 7 = sech2 (8, - 4 In 2 ) ,  moving parallel to the wall. 

Substituting (4.4) into (3.6) yields the asymptotic solution as c,t-+co. We 
emphasize that this solution satisfies the boundary condition of zero transverse 
velocity a t  the wall only asymptotically, whereas the solution given by (1.5) for 
k,  = k, = 1 and $, = - 

It follows from (4.1) and (4.3) that the dimensionless amplitude k2 = 7&/3a 
of the reflected wave decreases from 1 to 0 as $$ decreases from (3a)J to 0, in 
qualitative agreement with observation, whilst the angle of reflexion remains a t  
(3a)+. The amplitude (1 +k), of the stem wave, and therefore the asymptotic 

= $ > (3a)* satisfies it exactly. 
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amplitude a t  the wall, decreases from 4 to 1 in the same interval. Combining 
this result with that for regular reflexion, I (5.12), yields 

(4.5a) 
(4.5b) 

for the amplitude a t  the wall (see figure 5).  It follows that the maximum run-up 
of a weakly nonlinear solitary wave incident upon a rigid wall occurs for $i = (act)$ 
and is twice that predicted by linearized theory [(70)max 4 2 for a 4 0 in (4.5a)l. 

The preceding solution, developed in the context of reflexion, also provides the 
asymptotic solution for the diffraction of a solitary wave at  a concave corner of 
internal angle n- - $$, 0 ${ < (3a)*, or, equivalently, by a wedge of angle 2$< 
[the solution for regular reflexion provides the corresponding diffraction solution 
if $i > (3a)gI. 

The solution for - I < k < 0 provides a solution for diffraction at a convex 
corner of internal angle n---Ic(3a)*. The limit Ic 4 - 1 corresponds to asingle 
wave ($g = qF1) that vanishes asymptotically ( I c ,  = 0) below dy /dx  = Z(4a)S. 
This suggests that a soliton cannot turn through an angle greater than (3a)3 
at a convex corner without separating or otherwise losing its identity. 

I am indebted to Howell Peregrine for suggesting the connexion between my 
results for resonant interaction and the observed phenomenon of Mach reflexion. 
This work was partially supported by the Physical Oceanography Division, 
National Science Foundation, NSF Grant OCE74-23791, and by the Office of 
Naval Research under Contract NO001 4-76-C-0025. 
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